EWD – Effluent & Water Division - Waste Water Treatment
FDI Technologies applies its sewage treatment leadership to extract the full value from wastewater. We reduce municipalities' ecological impact by implementing wastewater treatment technologies that meet the stringent regulation standards.
We develop technologies for safe, environmentally compliant day-to-day sewage treatment plant operations, whatever the size. Be it on-site erection or pre-fabricated plants, we manufacture Wastewater Treatment Plants for handling municipal sewage as well as process waste.
Our solutions contribute to customized, efficient and cost-effective solutions covering the complete wastewater treatment cycle:
Primary Treatment
In the primary sedimentation stage, sewage flows through large tanks, commonly called "pre-settling basins", "primary sedimentation tanks" or "primary clarifiers". The tanks are used to settle sludge while grease and oils rise to the surface and are skimmed off. Primary settling tanks are usually equipped with mechanically driven scrapers that continually drive the collected sludge towards a hopper in the base of the tank where it is pumped to sludge treatment facilities. Grease and oil from the floating material can sometimes be recovered for saponification (soap making).
Secondary Treatment
Secondary treatment is designed to substantially degrade the biological content of the sewage which are derived from human waste, food waste, soaps and detergent. The majority of municipal plants treat the settled sewage liquor using aerobic biological processes. To be effective, the biota require both oxygen and food to live. The bacteria and protozoa consume biodegradable soluble organic contaminants (e.g. sugars, fats, organic short-chain carbon molecules, etc.) and bind much of the less soluble fractions into floc.
Extended aeration is a method of sewage treatment using modified activated sludge procedures. It is preferred for relatively small waste loads, where lower operating efficiency is offset by mechanical simplicity.
Extended aeration is typically used in prefabricated "package plants" intended to minimize design costs for waste disposal from small communities, tourist facilities, or schools. In comparison to traditional activated sludge, longer mixing time with aged sludge offers a stable biological ecosystem better adapted for effectively treating waste load fluctuations from variable occupancy situations. Supplemental feeding with something like sugar is sometimes used to sustain sludge microbial populations during periods of low occupancy; but population response to variable food characteristics is unpredictable, and supplemental feeding increases waste sludge volumes. Sludge may be periodically removed by septic tank pumping trucks as sludge volume approaches storage capacity.
Extended aeration agitates all incoming waste in the sludge from a single clarifier. The combined sludge starts with a higher concentration of inert solids than typical secondary sludge and the longer mixing time required for digestion of primary solids in addition to dissolved organics produces aged sludge requiring greater mixing energy input per unit of waste oxidized.
MBBR (Moving Bed Bio Reactor) –The MBBR system consists of an aeration tank (similar to an activated sludge tank) with special plastic carriers that provide a surface where a biofilm can grow. The carriers are made of a material with a density close to the density of water (1 g/cm3). An example is high-density polyethylene (HDPE) which has a density close to 0.95 g/cm3. The carriers will be mixed in the tank by the aeration system and thus will have good contact between the substrate in the influent wastewater and the biomass on the carriers.
To prevent the plastic carriers from escaping the aeration it is necessary to have a sieve on the outlet of the tank.
The MBBR system is considered a biofilm process. Other conventional biofilm processes for wastewater treatment are called trickling filter, rotating biological contactor (RBC) and biological aerated filter (BAF). Biofilm processes in general require less space than activated sludge systems because the biomass is more concentrated, and the efficiency of the system is less dependent on the final sludge separation. A disadvantage with other biofilm processes is that they experience bio clogging and build-up of head loss.
MBBR systems don't need a recycling of the sludge, which is the case with activated sludge systems.
The MBBR system is often installed as a retrofit of existing activated sludge tanks to increase the capacity of the existing system. The degree of filling of carriers can be adapted to the specific situation and the desired capacity. Thus, an existing treatment plant can increase its capacity without increasing the footprint by constructing new tanks.
When constructing the filling degree can be set to, for example, 40% in the beginning, and later be increased to 70% by filling more carriers. Examples of situations can be population increase in a city for a municipal wastewater treatment plant or increased wastewater production from an industrial factory.
Some other advantages compared to activated sludge systems are:
- Higher effective sludge retention time (SRT) which is favorable for nitrification
- Responds to load fluctuations without operator intervention
- Lower sludge production
- Less area required
- Resilient to toxic shock
- Process performance independent of secondary clarifier (due to the fact that there is no sludge return line)
This technology utilizes an aerobic fixed film process that is a combination submerged attached growth and activated sludge processes. This system is designed to be installed into a two compartment, where the first compartment provides majority of BOD removal, and the second compartment polishes the BOD. Rigid block-type media is submerged within the treatment module, providing surface area for microbial growth.
MBR (Membrane Bio Reactor) –Membrane bioreactor (MBR) is the combination of a membrane process like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewater treatment.
When used with domestic wastewater, MBR processes can produce effluent of high quality enough to be discharged to coastal, surface or brackish waterways or to be reclaimed for urban irrigation. Other advantages of MBRs over conventional processes include small footprint, easy retrofit and upgrade of old wastewater treatment plants.
It is possible to operate MBR processes at higher mixed liquor suspended solids (MLSS) concentrations compared to conventional settlement separation systems, thus reducing the reactor volume to achieve the same loading rate.
Two MBR configurations exist: internal/submerged, where the membranes are immersed in and integral to the biological reactor; and external/side stream, where membranes are a separate unit process requiring an intermediate pumping step.
Schematic of conventional activated sludge process (top) and external (side stream) membrane bioreactor (bottom)
Recent technical innovation and significant membrane cost reduction have enabled MBRs to become an established process option to treat wastewaters. As a result, the MBR process has now become an attractive option for the treatment and reuse of industrial and municipal wastewaters, as evidenced by their constantly rising numbers and capacity. The current MBR market has been estimated to value around US$216 million in 2006 and to rise to US$363 million by 2010.
Membrane bioreactors can be used to reduce the footprint of an activated sludge sewage treatment system by removing some of the liquid component of the mixed liquor. This leaves a concentrated waste product that is then treated using the activated sludge process.
UASB (Up flow Anaerobic Sludge Blanket) –Up flow anaerobic sludge blanket (UASB) technology, normally referred to as UASB reactor, is a form of anaerobic digester that is used for wastewater treatment.
The UASB reactor is a methanogenic (methane-producing) digester that evolved from the anaerobic clarigester. A similar but variant technology to UASB is the expanded granular sludge bed (EGSB) digester.
UASB uses an anaerobic process whilst forming a blanket of granular sludge which suspends in the tank. Wastewater flows upwards through the blanket and is processed (degraded) by the anaerobic microorganisms. The upward flow combined with the settling action of gravity suspends the blanket with the aid of flocculants. The blanket begins to reach maturity at around three months. Small sludge granules begin to form whose surface area is covered in aggregations of bacteria. In the absence of any support matrix, the flow conditions create a selective environment in which only those microorganisms capable of attaching to each other survive and proliferate. Eventually the aggregates form into dense compact biofilms referred to as "granules".
Biogas with a high concentration of methane is produced as a by-product, and this may be captured and used as an energy source, to generate electricity for export and to cover its own running power. The technology needs constant monitoring when put into use to ensure that the sludge blanket is maintained, and not washed out (thereby losing the effect). The heat produced as a by-product of electricity generation can be reused to heat the digestion tanks.
The blanketing of the sludge enables a dual solid and hydraulic (liquid) retention time in the digesters. Solids requiring a high degree of digestion can remain in the reactors for periods up to 90 days. Sugars dissolved in the liquid waste stream can be converted into gas quickly in the liquid phase which can exit the system in less than a day.
UASB reactors are typically suited to dilute waste water streams (3% TSS with particle size >0.75mm).
With UASB, the process of settlement and digestion occurs in one or more large tank(s). The effluent from the UASB, which has a much reduced biochemical oxygen demand (BOD) concentration, usually needs to be treated further, for example with the activated sludge process, depending on the effluent quality requirements.
SBR (Sequencing Batch Reactor) –Sequencing batch reactors (SBR) or sequential batch reactors are a type of activated sludge process for the treatment of wastewater. SBR reactors treat wastewater such as sewage or output from anaerobic digesters or mechanical biological treatment facilities in batches. Oxygen is bubbled through the mixture of wastewater and activated sludge to reduce the organic matter (measured as biochemical oxygen demand (BOD) and chemical oxygen demand (COD)). The treated effluent may be suitable for discharge to surface waters or possibly for use on land.
While there are several configurations of SBRs, the basic process is similar. The installation consists of one or more tanks that can be operated as plug flow or completely mixed reactors. The tanks have a "flow through" system, with raw wastewater (influent) coming in at one end and treated water (effluent) flowing out the other. In systems with multiple tanks, while one tank is in settle/decant mode the other is aerating and filling. In some systems, tanks contain a section known as the bio-selector, which consists of a series of walls or baffles which direct the flow either from side to side of the tank or under and over consecutive baffles. This helps to mix the incoming Influent and the returned activated sludge (RAS), beginning the biological digestion process before the liquor enters the main part of the tank.
There are five stages in the treatment process:
- Fill
- React
- Settle
- Decant
- Idle
The inlet valve opens and the tank is being filled in, while mixing is provided by mechanical means (no air). This stage is also called the anoxic stage. Aeration of the mixed liquor is performed during the second stage by the use of fixed or floating mechanical pumps or by transferring air into fine bubble diffusers fixed to the floor of the tank. No aeration or mixing is provided in the third stage and the settling of suspended solids starts. During the fourth stage the outlet valve opens and the "clean" supernatant liquor exits the tank.
Aeration times vary according to the plant size and the composition/quantity of the incoming liquor, but are typically 60 to 90 minutes. The addition of oxygen to the liquor encourages the multiplication of aerobic bacteria and they consume the nutrients. This process encourages the conversion of nitrogen from its reduced ammonia form to oxidized nitrite and nitrate forms, a process known as nitrification.
To remove phosphorus compounds from the liquor, aluminum sulfate (alum) is often added during this period. It reacts to form non-soluble compounds, which settle into the sludge in the next stage.
The settling stage is usually the same length in time as the aeration. During this stage the sludge formed by the bacteria is allowed to settle to the bottom of the tank. The aerobic bacteria continue to multiply until the dissolved oxygen is all but used up. Conditions in the tank, especially near the bottom are now more suitable for the anaerobic bacteria to flourish. Many of these, and some of the bacteria which would prefer an oxygen environment, now start to use oxidized nitrogen instead of oxygen gas (as an alternate terminal electron acceptor) and convert the nitrogen to a gaseous state, as nitrogen oxides or, ideally, molecular nitrogen (dinitrogen, N2) gas. This is known as denitrification.
Anoxic SBR can be used for anaerobic processes, such as the removal of ammonia via Anammox, or the study of slow-growing microorganisms. In this case, the reactors are purged of oxygen by flushing with inert gas and there is no aeration.
As the bacteria multiply and die, the sludge within the tank increases over time and a waste activated sludge (WAS) pump removes some of the sludge during the settle stage to a digester for further treatment. The quantity or “age” of sludge within the tank is closely monitored, as this can have a marked effect on the treatment process.
The sludge is allowed to settle until clear water is on the top 20 to 30 percent of the tank contents.
The decanting stage most commonly involves the slow lowering of a scoop or "trough" into the basin. This has a piped connection to a lagoon where the final effluent is stored for disposal to a wetland, tree growing lot, ocean outfall, or to be further treated for use on parks, golf courses etc.
In some situations, in which a traditional treatment plant cannot fulfill required treatment (due to higher loading rates, stringent treatment requirements, etc.) the owner might opt to convert their traditional system into a multi-SBR plant. Conversion to SBR will create a longer sludge age, minimizing sludge handling requirements downstream of the SBR.
The reverse can also be done where in SBR Systems would be converted into extended aeration (EA) systems. SBR treatment systems that could not cope up with a sudden constant increase of influent would easily be converted into EA plants. Extended aeration plants are more flexible in flow rate, eliminating restrictions presented by pumps located throughout the SBR systems. Clarifiers can be retrofitted in the equalization tanks of the SBR.
Tertiary & Polishing Treatment (UF/NF/MF/RO)
The purpose of tertiary treatment is to provide a final treatment stage to further improve the effluent quality before it is discharged to the receiving environment (sea, river, lake, wet lands, ground, etc.). More than one tertiary treatment process may be used at any treatment plant. If disinfection is practiced, it is always the final process. It is also called "effluent polishing."
Zero Liquid Discharge
Zero Liquid Discharge (ZLD) is a treatment process with the goal of removing all the liquid waste from a system. The focus of ZLD is to economically reduce wastewater and produce clean water that is suitable for reuse, thus saving money and being beneficial to the environment. ZLD systems employ advanced wastewater treatment technologies to purify and recycle virtually all of the wastewater produced.
Also ZLD technologies help plants meet discharge and water reuse requirements, enabling businesses to:
- Meet stringent government discharge regulations
- Reach higher water recovery (%)
- Treat and recover valuable products from waste streams, such as potassium sulfate, caustic soda, sodium sulfate, lithium and gypsum
The conventional way to reach ZLD is with thermal technologies such as evaporators (multi stage flash (MSF), multi effect distillation (MED) and mechanical vapor compression (MCV)) and crystallizers and recover their condensate. ZLD plants produce solid waste.